Iron transport in Mycobacterium smegmatis: Uptake of iron from ferric citrate.

نویسندگان

  • A J Messenger
  • C Ratledge
چکیده

In mycobacterial growth medium 40 to 400 microM citrate was required to solubilize 2 microM 55Fe. This solubilized 55Fe was taken up into both iron-deficient and iron sufficient washed cell suspensions of Mycobacterium smegmatis and Mycobacterium bovis BCG. Although the 55Fe was taken up into the cell, the citrate was not. The uptake system with M. smegmatis was not inhibited by electron transport inhibitors, uncouplers of oxidative phosphorylation, or thiol reagents and was saturable with iron at approximately 35 microM. The system was independent of the iron transport systems already known to exist in M. smegmatis: i.e., the two exochelin routes of assimilation as well as the mycobactin-salicylate system. It was not induced by the presence of 400 microM citrate in the growth medium, nor did the presence of citrate in the medium affect the production of either exochelin or mycobactin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of porins in iron uptake by Mycobacterium smegmatis.

Many bacteria rely on siderophores to extract iron from the environment. However, acquisition of iron-loaded siderophores is dependent on high-affinity uptake systems that are not produced under high-iron conditions. The fact that bacteria are able to maintain iron homeostasis in the absence of siderophores indicates that alternative iron acquisition systems exist. It has been speculated that s...

متن کامل

The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.

Mammalian cells accumulate iron from ferric citrate or ferric nitrilotriacetate through the activity of a transferrin-independent iron transport system [Sturrock, Alexander, Lamb, Craven and Kaplan (1990) J. Biol. Chem. 265, 3139-3145]. The uptake system might recognize and transport ferric-anion complexes, or cells may reduce ferric iron at the surface and then transport ferrous iron. To disti...

متن کامل

Nonreductive iron uptake mechanism in the marine alveolate Chromera velia.

Chromera velia is a newly cultured photosynthetic marine alveolate. This microalga has a high iron requirement for respiration and photosynthesis, although its natural environment contains less than 1 nm of this metal. We found that this organism uses a novel mechanism of iron uptake, differing from the classic reductive and siderophore-mediated iron uptake systems characterized in the model ye...

متن کامل

Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter.

In an attempt to identify components of a ferric citrate uptake system in Pseudomonas aeruginosa, a mutant library of a siderophore-deficient strain (IA614) was constructed and screened for defects in citrate-promoted growth in an Fe-restricted medium. A mutant disrupted in gene PA3901, encoding a homologue of the outer-membrane ferric citrate receptor, FecA, of Escherichia coli (FecA(E.c.)), w...

متن کامل

The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth

Many species of mycobacteria form structured biofilm communities at liquid-air interfaces and on solid surfaces. Full development of Mycobacterium smegmatis biofilms requires addition of supplemental iron above 1 microM ferrous sulphate, although addition of iron is not needed for planktonic growth. Microarray analysis of the M. smegmatis transcriptome shows that iron-responsive genes - especia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 149 1  شماره 

صفحات  -

تاریخ انتشار 1982